

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

Investigating the Halo-FAPA for **Molecular Emission Spectrometry of** Heteroatom-Containing Organic Compounds

<u>M. Schulz¹</u>, S. Winkler¹, N. H. Bings¹ ¹Johannes Gutenberg University Mainz, Department of Chemistry, Laboratory for Inorganic Trace Analysis and Plasma Spectrometry, Duesbergweg 10-14, 55128 Mainz

Abstract: In gas chromatography, spectrometric methods are employed for multi-channel detection (i.e. atomic emission and mass spectrometry). Detection of heteroatom-containing organic compounds by atomic emission can be challenging. A potential alternative to the detection of heteroatom-containing compounds via elemental emission could be the use of molecular bands of heteroatom containing molecular fragments. In previous studies, the general suitability of the halo-FAPA [1] as a universal detector for organic substances in gas chromatography was already demonstrated on the basis of the emission of the C₂ radical [2]. The presented study focuses on the suitability of halo-FAPA-OES for the determination of heteroatomic compounds, based on the emission of corresponding heteroatomic molecular fragments, employing exponential dilution for calibration and method simplification [3]. Considerations for the design of the halo-FAPA-OES system will be given and analytical figures of merit for acetonitrile, acetone and chloroform based on the detection of the emission bands of biatomic molecules such as CN, CO⁺ and CCI will be documented and critically discussed. Suggestions for future design modifications will also be given.

Experimental setup

Determination of analytical figures of merit

- Identification of emission bands observable under continuous sample introduction
- Observation of band heads associated with heteroatom containing biatomic molecules employing exponential dilution (ED) for sample introduction
- Optimization of the operating conditions of the halo-FAPA source (i.e. discharge current, make-up gas flow rate, length of discharge region)
- Determination of analytical figures of merit

Figure 2. Procedure for the determination of sensitivity and detection limit.

Method optimization

- Calibration curve accessible in one single experiment using exponential dilution
- Determination of limit of detection c_{LOD} based on the elapsed time t_{LOD} until the signal reaches the intensity corresponding to the detection limit I_{LOD}

Figure 1. Experimental setup and a side-on view of the halo-FAPA source.

Identification of observed band heads

Emission spectra of the halo-FAPA-source using continuous sample introduction

Background spectra of the halo-FAPA-source

Figure 3. Exemplary emission spectra of the halo-FAPA source in different wavelength ranges. Blue: Background spectrum. Red: Emission spectrum, continuous introduction of selected organic solvents.

Table 1. Band head positions and degradation of the emission bands as well as the corresponding emitting species.

Experimentally determined		Literature data [4, 5]				
Band head positions / nm	Degra- dation ^{1,2}	Band head positions / nm	Degra- dation ^{1,2}	Corresponding transition		•
				- B²Σ⁺ (v ') of the C	→ X²Σ⁺ (v '') N radical	-
385.447 ^{3, 4, 5}	V	385.47	V	v'= 3	v``= 3	
386.158 ^{3, 4, 5}	V	386.19	V	v'= 2	v"=2	
387.136 ^{3, 4, 5}	V	387.14	V	v '= 1	v ''= 1	• Go
388.331 ^{3, 4, 5}	V	388.34	V	v '= 0	v''=0	
415.796 ^{3, 4, 5}	V	415.81	V	v'= 4	v''= 5	
416.761 ^{3, 4, 5}	V	416.78	V	v'= 3	v''=4	ne
418.077 ^{3, 4, 5}	V	418.10	V	v'= 2	v''=3	Wi
419.697 ^{3, 4, 5}	V	419.72	V	v '= 1	v''= 2	
421.584 ^{3, 4, 5}	V	421.60	V	v'= 0	v ''= 1	
				$B^2\Sigma$ (v') → $X^2\Sigma$ (v'') of the CO ⁺ radical		• Er nc
229.980 ⁴	r	229.96	r	v ' = 0	v ``= 1	CO
232.525 ⁴	r	232.52	r	v '= 1	v``= 2	
241.956 ⁴	r	241.94	r	v ' = 0	v"=2	
244.597 ⁴	r	244.58	r	v'= 1	v"= 3	1
				A²Δ (v ') – of the C	[°] 'v: Ba [°] r: Bai [°] Obac	
277.752 ⁵	V	277.76	V	v ' = 0	v``= 0	
278.822 ⁵	V	278.83	V	v ' = 0	v``= 0	5 Obse

- Identification of observable emission bands was based on:
 - Position of the band heads
 - Degradation of the emission bands
 - Presence of multiple emission bands of the same band system

Figure 4. Sensitivity of the ED-halo-FAPA-OES method for the determination of acetonitrile, acetone and chloroform (length of the discharge region 5.0 mm, 1.0 mm and 5.0 mm, respectively).

- Method optimization with respect to maximum sensitivity
- Emission bands of CN non-specific for nitrogen-containing compounds \rightarrow Optimization of the FAPA-OES method for determination of acetonitrile with respect to
 - maximum sensitivity ratio (with/without N-containing compound)
- 2 different discharge region lengths, 3 discharge currents and 4 make-up gas flow rates investigated

Table 2. Achievable detection limits through ED-halo-FAPA-OES.

Analyte	Limit of detection	Wavelength	Operating conditions considered optimal			
	/ mg L ⁻¹	/ nm	Discharge region length / mm	Discharge current / mA	Make-up flow rate / mL min ⁻¹	
Acetonitrile	0.41 ± 0.06	388.331	5.0	40	900	
Acetone	0.34 ± 0.06	241.956	1.0	50	600	
Chloroform	2.8 ± 0.8	277.752	5.0	40	600	

 No emission bands of CCI radical visible using a 1.0 mm discharge region \rightarrow Connection with a lower dissociation energy (compared to that of CN and CO⁺) possible

od agreement of the perimentally determined band ead positions and degradation th literature data

nission bands of CN n-specific for nitrogen ntaining compounds

nd degraded to violet nd degraded to red rveable by introduction of acetonitrile rveable by introduction of acetone erveable by introduction of chloroform

Summary and Outlook

- Proof of principle for determination of heteroatom-containing compounds by means of ED-halo-FAPA-OES employing the emission of non-metal containing biatomic molecules
- Emission on molecular bands of CN non-specific for nitrogen-containing molecules
- Upper trace concentration detection limits for acetonitrile, acetone and chloroform

Possible future design modifications:

- Enlargement of the inner electrodes contact surface (coaxial alignment of the electrodes proved to be challenging with discharge region lengths exceeding 5.0 mm)
- Reversing the discharge polarities or establishing a floating ground \rightarrow Preventing discharges in the region of the inner electrodes contact pin (Occasionally occurred with the current setup)

References

[1] K. P. Pfeuffer, J. N. Schaper, J. T. Shelley, S. J. Ray, G. C.-Y. Chan, N. H. Bings, G. M. Hieftje, Anal. Chem. 2013, 85, 7512-7518.

[2] S. Winkler, Doctoral dissertation, Johannes Gutenberg University, Mainz, 2023. [4] R. W. B. Pearse, A. G. Gaydon, The Identication of Molecular Spectra, Chapman & Hall, London, 1950.

[3] T. R. Booher, R. C. Elser, J. D. Winefordner, Appl. Spectrosc., 1982, 36, 99-102. [5] M. Larsson, M. R. A. Blomberg, P. E. M. Siegbahn, Mol. Phys. 1982, 46, 365-382.